Comment former et utiliser les superlatifs associés au present perfect en anglais ?
Ce cours de maths niveau lycée (terminale) proposé par ton prof de soutien scolaire en ligne met en avant le schéma de Bernoulli et la notion de loi binomiale.
Définitions et rappel de cours :Qu'est-ce qu'un schéma de Bernoulli ?Un schéma de Bernoulli d’ordre n est la répétition d’une épreuve de Bernoulli n fois où chaque issue est indépendante. Que signifie loi Binomiale ?Soit X la variable aléatoire qui compte le nombre de succès dans un schéma de Bernoulli constitué de n épreuves ayant chacune une probabilité de succès égale à p. |
Utilisation d’une calculatrice pour déterminer P(X=k) pour une loi binomiale
de paramètres n et p.
Sur Texas instrument : Fonction « binomFdp(n,p,k) » (menu « distrib ») avec les arguments n, p et k.
Sur Casio : Fonction « BinomialPD(k,n,p) » (dans « OPTN » puis « STAT » puis « DIST » puis « BINM » et « Bpd » pour finir) avec les arguments k, n et p.
Utilisation d’une calculatrice pour déterminer P(X inférieur ou égal à k) pour une loi binomiale de paramètres n et p
Sur Texas instrument : Fonction « binomFrép(n,p,k) » (menu « distrib ») avec les arguments, p et k .
Sur Casio : Fonction « BinomialCD(k,n,p) » (« OPTN » puis « STAT » puis « DIST » puis « BINM » et « Bcd » pour finir) avec les arguments k, n et p
Tous les résultats seront arrondis à 0,01 près.
Une entreprise produit en grande quantité des stylos.
La probabilité qu’un stylo présente un défaut est égale à 0,1.
1) On prélève dans cette production, successivement et avec remise huit stylos.
On note X la variable aléatoire qui compte le nombre de stylos présentant un défaut parmi les huit stylos prélevés.
1) On admet que X suit une loi binomiale.
Donner les paramètres de cette loi.
2) Calculer les probabilités des événements suivants, à l’aide de la calculatrice :
A : “il n’y a aucun stylo avec un défaut”
B : “il y a au moins un stylo avec un défaut”
C : “ il y a exactement deux stylos avec un défaut”
D : “ il y a moins de deux stylos avec un défaut”
Rappel de cours : Soit la variable aléatoire X qui suit la loi Binomiale de paramètre n et p.
On a : E(X)=n×p
Soit la variable aléatoire Y telle que Y=aX+b.
On a alors E(Y)=aE(X)+b
Un élève se rend à vélo au lycée distant de 3 km de son domicile à une vitesse supposée constante de 15km/h.
Sur le parcours, il rencontre 6 feux tricolores non synchronisés.
Pour chaque feu, la probabilité qu’il soit au vert est .Un feu rouge ou orange lui fait perdre une minute et demie.On appelle X la variable aléatoire correspondant au nombre de feux verts rencontrés par l’élève sur son parcours
et T la variable aléatoire égale au temps en minute mis par l’élève pour aller au lycée.
1) Déterminer la loi de probabilité de X.
2) Exprimer T en fonction de X.
3) Déterminer E(T) et interpréter ce résultat.
4) L’élève part 17 minutes avant le début des cours.
a) Peut-il espérer être à l’heure?
b) Calculer la probabilité qu’il soit en retard.
1) Les 6 feux sont indépendants les uns des autres et chacun a une probabilité de d’être vert.Donc le nombre X de feux verts suit une loi binomiale de paramètres 6 et
.
2) Il y a feux rouge ou orange, avec une attente de 1,5 minutes pour chacun.Le trajet, sans attente dure :
minutes.On a donc:
Soit
.
3) Soit
En moyenne, l’élève met 15 minutes pour se rendre au lycée.
4)
a) Le temps moyen est inférieur à 17 minutes, donc l’élève peut espérer être à l’heure.
b) soit
soit
On cherche donc
soit
La calculatrice donne :
Conclusion: Il y a 10% de chance qu’il soit en retard.
Aller + loin dans ta préparation bac spécialité mathsCalculer des probabilités avec une loi Binomiale en utilisant la calculatrice et déterminer l’espérance d’une loi Binomiale |
Comment former et utiliser les superlatifs associés au present perfect en anglais ?
Quelle est la différence entre "whether" et "if "?